Parvin-ILK
نویسندگان
چکیده
Integrin-linked kinase (ILK), PINCH and Parvin proteins form the IPP-complex that has been established as a core component of the integrin-actin link. Our recent genetic studies on Drosophila parvin, reveal that loss of function mutant defects phenocopy those observed upon loss of ILK or PINCH in the muscle and the wing, strengthening the notion that these proteins function together in the organism. Our work identified that ILK is necessary and sufficient for parvin subcellular localization, corroborating previous data indicating a direct association between these two proteins. Further genetic epistasis analysis of the IPP-complex assembly at integrin adhesion sites reveals that depending on the cell context each component is required differently. At the muscle attachment sites of the embryo, ILK is placed upstream in the hierarchy of genetic interactions required for the IPP-complex assembly. By contrast, in the wing epithelium the three proteins are mutually interdependent. Finally, we uncovered a novel property for the CH1-domain of parvin: its recruitment at the integrin-containing junctions in an ILK-dependent manner. Apparently, this ability of the CH1-domain is controlled by the inter-CH linker region. Thus, an intramolecular interaction within parvin could serve as a putative regulatory mechanism controlling the ILK-Parvin interaction.
منابع مشابه
The Integrin-Linked Kinase-PINCH-Parvin Complex Supports Integrin αIIbβ3 Activation
Integrin-linked kinase (ILK) is an important signaling regulator that assembles into the heteroternary complex with adaptor proteins PINCH and parvin (termed the IPP complex). We recently reported that ILK is important for integrin activation in a Chinese hamster ovary (CHO) cell system. We previously established parental CHO cells expressing a constitutively active chimeric integrin (αIIbα6Bβ3...
متن کاملFunctional molecular imaging of ILK-mediated Akt/PKB signaling cascades and the associated role of beta-parvin.
Visualization and quantification of the dynamics of protein-protein interactions in living cells can be used to explore the macromolecular events involved in signal transduction processes. In this study, functional molecular imaging using a luciferase-based complementation method demonstrated how the integrin-linked kinase (ILK)-mediated protein complex controls downstream signals. The lucifera...
متن کاملFunctional analysis of parvin and different modes of IPP-complex assembly at integrin sites during Drosophila development.
Integrin-linked kinase (ILK), PINCH and parvin constitute the tripartite IPP complex that maintains the integrin-actin link at embryonic muscle attachment sites (MASs) in Drosophila. Here we showed that parvin null mutants in Drosophila exhibit defects in muscle adhesion, similar to ILK and PINCH mutants. Furthermore, the identical muscle phenotype of the triple mutant, which for the first time...
متن کاملThe Integrin‐Mediated ILK‐Parvin‐αPix Signaling Axis Controls Differentiation in Mammary Epithelial Cells
Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via β1-integrin (β1-itg) to establish apico-basal polarity and to differentiate in response to prolactin. Downstream of β1-itg, the scaffold protein Integrin Linke...
متن کاملSignificance of Thymosin β4 and Implication of PINCH-1-ILK-α-Parvin (PIP) Complex in Human Dilated Cardiomyopathy
Myocardial remodeling is a major contributor in the development of heart failure (HF) after myocardial infarction (MI). Integrin-linked kinase (ILK), LIM-only adaptor PINCH-1, and α-parvin are essential components of focal adhesions (FAs), which are highly expressed in the heart. ILK binds tightly to PINCH-1 and α-parvin, which regulates FA assembly and promotes cell survival via the activation...
متن کامل